Comparing Means of Two Groups Elias Rizk MD

• We often want to compare individuals (or other units) from two groups.

Questions are often about underlying populations

- The questions in the above scenarios are not about the specific customers who entered the supermarket, the specific bank accounts that were sampled, etc.
- They ask about the differences between supermarket spending by males and females in general, the differences between the two types of bank account in general, etc.

Questions are often about underlying populations

- We are therefore usually interested in the characteristics of a population or process that we assume underlies the data that are collected.
- The data provide information about the likely characteristics of the population.

Model for two groups

- A single batch of numerical values is usually modelled as a random sample from some population — often a normal distribution.
- In a similar way, data sets that consist of measurements from two groups are often modelled as two independent random samples from two underlying hypothetical infinite populations.
- Normal distributions are again commonly used as models.

Model for two groups

• The assumption of normality should be checked from graphical displays of the sample data. If the data are noticeably skewed, a transformation may provide values that can be adequately modelled by normal distributions

Region of Rejection and Retention

• Determining whether or not to reject the null depends on where the obtained t value falls within the t-distribution

Directional Tests

• One tailed tests place the entire region of rejection in a single tail

• Two tailed tests divide the region of rejection into portions for each tail

t-Distributions

• The shape of the t-distribution changes depending upon the size of your sample

t has a Student's *t* distribution*

t has a Student's *t* distribution*

* Under the null hypothesis

Difference between means

Comparing the populations

- For two-group data sets, we usually want to compare the underlying populations.
- In particular, the main questions of interest are:
	- Are the two population distributions the same?
	- If the populations are different, how big is the difference?

Plot the Data

Comparing the populations

■ The natural display for comparing two groups is boxplots of the data for the two groups, placed side-byside. For example:

Comparing Two Means

- Once we have examined the side-by-side boxplots, we can turn to the comparison of two means.
- Comparing two means is not very different from comparing two proportions.
- This time the parameter of interest is the difference between the two means, $\mu_1 - \mu_2$.

Comparing Two Means

- A t-test may be used to evaluate whether a single group differs from a known value (a one-sample t-test)
- Whether there is a significant difference in paired measurements (a paired, or dependent samples t-test).
- Whether two groups differ from each other (an independent twosample t-test)

One Sample T-tests

- One sample t-tests are used in the following two situations
	- The size of a sample is less than 25
	- The population standard deviation is unknown
	- The one-sample t-test is a statistical hypothesis test used to determine whether an unknown population mean is different from a specific value.
- The formula for a one sample test uses the estimated population standard deviation to calculate the standard error

•
$$
\sigma_M = \frac{\sigma_{est}}{\sqrt{n}}
$$

• $t = \frac{M - \mu}{\sigma_M}$

Quick reference summary: One-sample *t*-test

- What is it for? *Compares the mean of a numerical variable to a hypothesized value,* $μ$
- What does it assume? *Individuals are randomly sampled from a population that is normally distributed*
- Test statistic: *t*
- Distribution under H_o: *t-distribution with n-1 degrees of freedom*

s/ *n*

• Formulae:*Y = sample mean, s = sample standard deviation* $t =$ $\overline{Y} - \mu_o$

$$
\mathcal{L}(\mathcal{A})
$$

Paired vs. 2 sample comparisons

Paired designs

- Data from the two groups are paired
- There is a one-to-one correspondence between the individuals in the two groups

More on pairs

- Each member of the pair shares much in common with the other, *except* for the tested categorical variable
- Example: identical twins raised in different environments
- Can use the same individual at different points in time
- Example: before, after medical treatment

Paired design: Examples

- Same river, upstream and downstream of a power plant
- Tattoos on both arms: how to get them off? Compare lasers to dermabrasion

Paired comparisons

• To compare two groups, we use the mean of the *difference* between the two members of each pair

Example: National No Smoking Day

- Data compares injuries at work on National No Smoking Day (in Britain) to the same day the week before
- Each data point is a year

Data

Calculate differences

Paired *t* test

- Compares the mean of the differences to a value given in the null hypothesis
- For each pair, calculate the difference.
- The paired *t*-test is a one-sample *t*-test on the differences.

Hypotheses

Ho: Work related injuries do not change during No Smoking Days (μ=0)

Ha: Work related injuries change during No Smoking Days (μ≠0)

Calculate differences

- The number of data points in a paired *t* test is the number of *pairs*. - *Not* the number of individuals
- Degrees of freedom = Number of pairs 1

Here,
$$
df = 10-1 = 9
$$

Critical value of *t*

Test statistic: $t = 2.45$

So we can reject the null hypothesis: Stopping smoking increases job-related accidents in the short term.

Assumptions of paired *t* test

- Pairs are chosen at random
- The differences have a normal distribution

It does *not* assume that the individual values are normally distributed, only the differences.

Quick reference summary: Paired *t*-test

- What is it for? *To test whether the mean difference in a population equals a null hypothesized value, μ*_{do}
- What does it assume? *Pairs are randomly sampled from a population. The differences are normally distributed*
- Test statistic: *t*
- Distribution under H_o: *t-distribution with n-1 degrees of freedom, where n is the number of pairs*

Two Sample Studies

- Two samples can be compared when parameters for both populations are not available
- Research Hypothesis

• Null Hypothesis

Assumptions and Conditions

- Independence Assumption (Each condition needs to be checked for both groups.):
	- Randomization Condition: Were the data collected with suitable randomization (representative random samples or a randomized experiment)?
	- 10% Condition: We don't usually check this condition for differences of means. We will check it for means only if we have a very small population or an extremely large sample.
	- The variance of both populations is equal.

Assumptions and Conditions (cont.)

- Normal Population Assumption:
	- Nearly Normal Condition: This must be checked for *both* groups. A violation by either one violates the condition.
- Independent Groups Assumption: The two groups we are comparing must be independent of each other.

Quick reference summary: Two-sample *t*-test

- What is it for? *Tests whether two groups have the same mean*
- What does it assume? *Both samples are random samples. The numerical variable is normally distributed within both populations. The variance of the distribution is the same in the two populations*
- Test statistic: *t*
- Distribution under H_o : *t-distribution with n*₁+n₂-2 degrees *of freedom.* \overline{Y} \overline{Y} $SE_{\bar{Y}_1 - \bar{Y}_2} = \sqrt{s_p^2}$ $\frac{2}{1}$ + 1 $\left($ $\Bigg($ \setminus \int

a
Ma

 $n₁$

 $df_1s_1^2 + df_2s_2^2$

 $df_1 + df_2$

 $s_p^2 =$

 $n₂$

• Formulae:

$$
t=\frac{Y_1-Y_2}{SE_{\bar{Y}_1-\bar{Y}_2}}
$$

Comparing means when variances are not equal

Welch's *t* test

Welch's approximate t-test compares the means of two

normally distributed populations that have unequal

variances.

ANOVA

- ANOVA is used when more than two groups are compared
- In order to conduct an ANOVA, several assumptions must be made
	- The population from which the samples are drawn are normally distributed
	- The populations from which the samples are drawn have equal variances
- Test statistic: F
- Distribution under H_o : F distribution with k-1 and N-k degrees of freedom

Partitioning Variances

• When conducting an ANOVA, the variances of the groups are partitioned into between-group variance and within-group variance

Mean Squares

- Mean Squares are variances
	- They are the average squared deviation score
- The test statistic for an ANOVA, F, is calculated by dividing two mean squares

•
$$
F = \frac{MS_{between}}{MS_{within}}
$$

Decision Making for ANOVA

• The F-Distribution is used to obtain the critical value for an ANOVA

One Way ANOVA

• One Way ANOVA's involve a single independent variable

Depression Level Afree Teastment

Logic for ANOVA

- The logic for an F-test (ANOVA) is the same as other hypotheses tests
- $F =$ MS_{between} observed^{–MS}between expected **MS**within
- The MS_{Between expected} is always believed to be zero

Calculating Sum of Squares

• These are the formulas for the variance partitions

•
$$
SS_{bet} = \sum_{1}^{k} \frac{(\sum X_g)^2}{n_g} - \frac{(\sum X_{tot})^2}{N}
$$

\n• $SS_{with} = \sum_{1}^{N} X^2 - \sum_{1}^{k} \frac{(\sum X_g)^2}{n_g}$
\n• $SS_{tot} = \sum_{1}^{N} X^2 - \frac{(\sum X_{tot})^2}{N}$

Calculating df and MS

•
$$
df_{\text{bet}} = \text{No. of Groups} - 1 = k-1
$$

- df_{with} = No. of Subjects No. of groups = N-k
- df_{tot} = No. of Subjects $-1 = N-1$

•
$$
MS_{bet} = \frac{SS_{bet}}{df_{bet}}
$$

\n• $MS_{with} = \frac{SS_{with}}{df_{with}}$

ANOVA Table: Example

ANOVA Table: Example

Factorial ANOVA

• Factorial ANOVAs contain multiple independent variables

Main Effects

• Main effects indicate significant differences within a single independent variable

Group Means for a Two-Way ANOVA With Two Main Effects and No **Interaction Effect**

Connected Group Means for a Two-Way ANOVA With Two Main Effects and No Interaction Effect

Interaction Effects

• Interaction effects indicate significant differences across two independent variables

Two-factor ANOVA Table

Nonparametric Tests

Nonparametric Tests

- Nonparametric tests are those that do not rely on probability distributions for population parameters
- They are used when
	- Data are badly skewed
	- Sample sizes are small
	- Data are not on an interval or ratio scale

Mann-Whitney U test

Mann-Whitney U test

• Large-sample approximation:

$$
Z = \frac{2U - n_1 n_2}{\sqrt{n_1 n_2 (n_1 + n_2 + 1)/3}}
$$

Use this when $n_1\& n_2$ are both > 10 Compare to the standard normal distribution

Mann-Whitney U Test

- If you have ties:
	- Rank them anyway, pretending they were slightly different
	- Find the average of the ranks for the identical values, and give them all that rank
	- Carry on as if all the whole-number ranks have been used up

Data

142

5

 $\frac{4}{2}$

14

18

14

Sorted Data Data

Rank them anyway, pretending they were slightly different

Example

These can now be used for the Mann-Whitney U test

Benefits and Costs of Nonparametric Tests

- Main benefit:
	- Make fewer assumptions about your data
	- E.g. only assume random sample
- Main cost:
	- Reduce statistical power
	- Increased chance of Type II error

When Should I Use Nonparametric Tests?

- When you have reason to suspect the assumptions of your test are violated
	- Non-normal distribution
	- No transformation makes the distribution normal
	- Different variances for two groups

Quick Reference Summary: Sign Test

- What is it for? A non-parametric test to compare the medians of a group to some constant
- What does it assume? Random samples
- Formula: Identical to a binomial test with $p_0 = 0.5$. Uses the number of subjects with values greater than and less than a hypothesized median as the test statistic.

 $P(x)$ = probability of a total of x successes p = probability of success in each trial $n =$ total number of trials

$$
P(x) = {n \choose x} p^x (1-p)^{n-x}
$$
 $P = 2 * Pr[x \geq x]$

Quick Reference Summary: Mann-Whitney U Test

- What is it for? A non-parametric test to compare the central tendencies of two groups
- What does it assume? Random samples
- Test statistic: U
- Distribution under H_o: U distribution, with sample sizes n_1 and n_2
- Formulae:

$$
U_1 = n_1 n_2 + \frac{n_1(n_1 + 1)}{2} - R_1
$$

$$
U_2 = n_1 n_2 - U_1
$$

 n_1 = sample size of group 1 $n₂$ = sample size of group 2 R_1 = sum of ranks of group 1

Use the larger of U1 or U2 for a two-tailed test

